Finding Depictive Secondary Predicates in Large Web Corpora

Benjamin Burkhardt¹, Laura Kallmeyer¹ & Timm Lichte^{1,2}

¹CRC991: University of Düsseldorf ²University of Tübingen

Corpus Linguistics 2019, July 26th 2019

haino

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

SECONDARY PREDICATE (SP): a typically sentence final, adjectival element that predicates one of the (main) verbal predicate's arguments; we call the predicated element the **TARGET**.

RESULTATIVES (**RSPs**) characterize states that are brought about by the event that is expressed by the main verb.

(1) Sean stomped the can_i flat_i.

DEPICTIVES (**DSPs**) express properties that hold for at least some part of the event time, but do not immediately result from the verb event.

(2) Tom ate the $pizza_i \text{ cold}_i$.

- SP data in the literature is mostly introspectively constructed and relies on native speakers' grammaticality judgments.
- To our knowledge, a systematic corpus study of such phenomena has not been conducted so far.
- The goal of this contribution is to initiate such a study.
- ⇒ How can SP data be detected in large web corpora?
- ⇒ What theoretically predicted SP data can we actually observe?

- Methodology
- Results Based on MaltParser
- Results based on Stanford Parser

- Methodology
- Results Based on MaltParser
- Results based on Stanford Parser

Predicted Targets: Subject & Object

Based on their semantic compatibility, depictives can target the subject or the object.

- (3) a. Kim ate the $steak_i raw_i$.
 - b. Kim_i ate the steak hungry_i.

If both verbal arguments are semantically compatible with the depictive **TARGET AMBIGUITY** arises.

(4) Kim_i ate the apple_j unwashed_{i/j}.

DEPICTIVE STACKING is possible, but generally seems to decrease acceptability.

(5) a. ? Kim_i ate the steak_j raw_j hungry_i.
b.?? Kim_i ate the steak_j hungry_i raw_j.
c.?? Kim ate the steak_j raw_j salted_j.

Depictives may target unrealized agents, see (6-a), or theme arguments, see (6-b).

- (6) a. The book_j is to be read $naked_{i/*j}$.
 - b. We_i usually bake gluten-free $_{i/j}$.

Predicted Impossible Targets

Oblique verbal arguments, i.e. non-direct objects and PP-objects, do not constitute viable targets.

(7) a. The cash machine_i gave John_j the money_k hungry_{*i/*j/*k}.

b. Peter crashed into him_i tired_{*i}.

Depictives cannot target modifying constituents like PP-adjuncts.

(8) John drilled a hole with a power tool_i new $_{i}$.

Neither the **embedded** genitive noun in (9-a) nor the single conjuncts in (9-b) constitute viable targets.

- (9) a. John met Maria's_i father naked $*_i$.
 - b. $[John_i and Paul_j]_k met [Maria_m and her boyfriend_n]_o naked_{i/*j/k/*m/*n/o}$.

Theoretical predictions

- Most examples in the literature are either constructed or anecdotal.
- Lack of systematic empirical studies of the phenomenon (acceptability judgment studies and corpus studies)

- Methodology
- Results Based on MaltParser
- Results based on Stanford Parser

- Methodology
- Results Based on MaltParser
- Results based on Stanford Parser

Expectation: SPs are a relatively rare phenomenon

- \rightarrow A large and stylistically diverse corpus of English is required.
 - ENCOW16AX is a large corpus of English with ≈ 9,6 Billion tokens (scrambled on sentence level).
 - Since it is web-based, it covers a wide variety of Englishes and both formal and colloquial texts.
 - The corpus creation pipeline is open source and the corpus itself can be used free of charge. (https://corporafromtheweb.org/)
 - Annotation layers:
 - Lemmatization (TreeTagger)
 - Part-Of-Speech tags (Penn Treebank tag set, TreeTagger)
 - Syntactic dependencies (Stanford dependencies, MaltParser)

- We conduct our corpus study by using a selection of 10 frequent adjectival stage level predicates, e.g. *naked*, *hot*, *cold*, and *happy*.
- A preliminary analysis indicates that **stage level predicates** are more likely to appear in SP constructions.
- The stage and individual level predicate distinction is not rigid, however the concept proves useful in our study.

Filter 1: Adjectives with a verbal head

SPs appear in positions where usually adverbial modifiers could appear.

(10) a. Kim left; the room angrily;. (Adverbial)b. Kim; left the room angry;. (Depictive)

⇒ We are looking for adjectives (JJ) with a verbal head (VB, VBD, VBG, VBN, VBP, VBZ).

Filter 2: Only advmod dependencies

SPs have a modifying dependency relation to their head.

⇒ We are looking for adjectives (JJ) with an advmod dependency relation to their verbal head (VB, VBD, VBG, VBN, VBP, VBZ).

Filter 3: No copula verbs

We observe a lot of wrong parses of the MaltParser that include a copula construction.

- (12) a. Kim got very drunk.
 - b. Kim_{*i*} left very drunk_{*i*}.

(Copula) (Depictive)

⇒ We exclude sentences with copula and "copula-like" lemmata. be, get, make, become, how, keep, stay, feel, look, seem, remain, appear ENCOW only includes the following annotation information for each token:

[token-index, token, lemma, POS tag, head index, dependency]

However: For our filter, we need access to all annotation information of the adjectives head token. The head index does not suffice!

- ⇒ To query/filter for our data via NoSketch Engine, ENCOW would have to be reformated to include all the head information.
- \Rightarrow Therefore, we used our own Python scripts instead.

2 Corpus Study

Methodology

• Results Based on MaltParser

• Results based on Stanford Parser

The following three steps are applied to extract samples for each DSP candidate item (implemented in Python) :

Step	Filter	Sentence Count
0.	None (complete ENCOW16AX)	\approx 421 Million
1.	POS: JJ, DepRel: advmod	\approx 4 Million
2.	No copula constructions	\approx 2.4 Million
3.	Sampling	200 per adjective

To receive samples of 200 sentences we query the subcorpus without any Copula and apply some additional filters based on the adjective at hand.

MaltParser Annotation Results

Construction	naked	hot	cold	happy
Depictives	137/68,5%	39/19,5%	20/10%	32/16%
Actor oriented	120/60%	8/4%	9/4,5%	29/14,5%
Undergoer oriented	13/6,5%	21/10,5%	11/5,5%	3/1,5%
Unrealized target	4/2%	11/5,5%	-	-
Sentence initial	5/2,5%	-	-	-
Resultatives	9/4,5%	7/3,5%	_	1/0,5%
Copula(-like)	-	41/20,5%	23/11,5%	61/30,5%
Adverbial Uses	-	10/5%	5/2,5%	2/1%
Nominalizations	-	7/3,5%	29/14,5%	8/4%
Adnominal Uses	-	30/15%	55/27,5%	19/9,5%
Multi Word Expression	-	21/10,5%	-	-
Other	41/20,5%	34/17%	53/26,5%	60/30%
Out	13/6,5%	11/5,5%	15/7,5%	17/8,5%

The annotation was done manually by the speaker.

Discussion: MaltParser Annotation Results

• No instance of target stacking, but some quirky data.

Embedded target?

- (13) a. Images of women_i swirl naked_i on the ceiling [...].
 - Naked_i, you can see her_i ribs through the dusty white of her back.

Unrealizable implicit target?

(14) It feels so much better $naked_i$.

- Still there is a lot of noise due to errors in the syntactic annotation.
- Therefore, we tried the same filter but with dependencies from the Standford Parser.

- Methodology
- Results Based on MaltParser
- Results based on Stanford Parser

Stanford Parser Annotation Results

Construction	naked	hot	cold	happy
Depictives	148/74%	27/18,5%	25/10%	38/19%
Actor oriented	122/61%	1/0,5%	9/4,5%	29/14,5%
Undergoer oriented	23/11,5%	22/11%	16/8%	9/5,5%
Unrealized target	-	4/2%	-	-
Sentence initial	-	_	-	-
Resultatives	12/6%	1/0,5%	-	-
Copula(-like)	9/4,5%	57/28,5%	41/20,5%	94/47%
Adverbial Uses	-	34/17%	19/9,5%	1/0,5%
Nominalizations	2/1%	1/0,5%	30/15%	3/1,5%
Adnominal Uses	1/0,5%	6/3%	13/7,5%	5/2,5%
Multi Word Expression	-	11/5,5%	-	2/1%
Other	17/8,5%	48/24%	55/22,5%	46/23%
Out	11/5,5%	15/7,5%	17/8,5%	11/5,5%

The annotation was done manually by the speaker.

Quirky Dependency Parses

Sentential Complement and Copula Dependency

- Methodology
- Results Based on MaltParser
- Results based on Stanford Parser

Implications & Future Work

- We presented an ongoing empirical study on the usage of DSPs in web corpora.
- Filters use POS information and syntactic dependencies
- Unfortunately, the performance of the two used parsers (MaltParser, Stanford Parser) is poor wrt. secondary predicates.
- Still interesting data that seem unexpected from point view of current literature.
- Contrast between findings for *naked* and the other adjectives

Future work:

- Adjust filters? Use another parser (Berkley)? More principled adjective selection?
- More fine grained semantic analysis of the relation between the depictive and its target. -> semantic conditions on DSPs
- Analysis of semantic properties of "depictive friendly" verbs

Thanks for your kind attention!

Pssst, ask me about the implemented grammar resource and corpus filter scripts on Github.

- Burkhardt, Benjamin, Timm Lichte & Laura Kallmeyer. 2017. Depictives in English: An LTAG approach. In Proceedings of the 13th international workshop on tree adjoining grammars and related formalisms, 21–30. Umeå, Sweden: Association for Computational Linguistics. http://www.aclweb.org/anthology/W17-6203.
- [2] Geuder, Wilhelm. 2004. Depictives and transparent adverbs. In Jennifer R. Austin, Stefan Engelberg & Gisa Rauh (eds.), Adverbials: The interplay between meaning, context, and syntactic structure, 131–166. Amsterdam: John Benjamins Publishing Company.
- [3] Müller, Stefan. 2008. Depictive secondary predicates in German and English. In Christoph Schroeder, Gerd Hentschel & Winfried Boeder (eds.), Secondary predicates in Eastern European languages and beyond (Studia Slavica Oldenburgensia 16), 255–273. Oldenburg: BIS-Verlag.
- [4] Pylkkänen, Liina. 2002. Introducing arguments. Cambridge, MA: Massachusetts Institute of Technology dissertation.