

Depictives in English: An LTAG Approach

Benjamin Burkhardt, Timm Lichte, Laura Kallmeyer SFB991, Heinrich-Heine-Universität Düsseldorf

Overview

- Analysis of depictive secondary predicates in English in terms of Lexicalized Tree Adjoining Grammar (LTAG) [1] and Düs**seldorf Frames** [8; 10], first described in Burkhardt, Lichte & Kallmeyer [3].
 - **Target ambiguity** of depitives modeled as disjunction in the frame descriptions of depictives.
 - Linking of syntax and semantcs using **macroroles** [5; 6; 11]
- NEW: Implementation using eXtensible MetaGrammar **(XMG)** [4; 9]
- NEW: Parsing with Tübingen Linguistic Parsing Architecture (TuLiPA) [2; 7]

Framework: LTAG & frames

Depictive Secondary Predicates: Data & LTAG Analysis

Depictive secondary predicates: typically sentence final, adjectival elements that predicate one of the verbal predicate's arguments; we call the predicated element the target.

• Three strategies for modeling target ambiguity: (i) syntactic ambiguity, (ii) interface ambiguity,

The characterized state holds for at least some **initial** part of the event time.

(depictive) a. Kim ate the steak_i raw_i. (1)(non-initial, event-final \Rightarrow resultative) b. Sean stomped the can_i flat_i.

Possible targets are the subject and object of the main verb, depending on semantic compatibility.

- a. Kim ate the steak_i raw_i. (2)
 - Kim_i ate the steak hungry_i. b.
 - c. Kim_i ate the apple_i <u>unwashed_{i/i}</u>.

(target ambiguity)

Depictive stacking is possible, but generally seems to decrease acceptability.

a. ? Kim_i ate the steak_i raw_i hungry_i. (well-nested) (3) b?? Kim_i ate the steak_i hungry_i raw_i. (ill-nested) c?? Kim ate the steak raw_i salted.

Depictives may target **unrealized arguments**.

a. The book_i is to be read <u>naked_i/*i</u>. (4) b. We_i usually bake gluten-free_{*i/i}.

Impossible targets are indirect/oblique objects and modifying constituents.

- a. The cash machine_i gave John_i the money_k hungry_{*i/*i/*k}. (indirect object) (5) b. Peter crashed into him_i tired $*_i$. (PP-object)
 - c. John drilled a hole with a power tool_i <u>new_{*i}</u>. (adjunct)

There are also strict locality restrictions.

a. John met [Maria's_i father] <u>naked_{*i}</u>. (6)

b. [John_i and Paul_i]_k met [Maria_m and her boyfriend_n]_o <u>naked_{*i/*i/k/*m/*n/o</u>.</u>}

- (iii) semantic ambiguity. We opt for **semantic ambiguity** (\Rightarrow uniform trees for depictives).
- **Problem:** How to select only semantic roles of syntactic arguments? **Solution:** Use syntactically grounded semantic macroroles **actor** and **undergoer** [11]. Macrorole linking is performed in the metagrammar [6].

The Implementation: Extensible Metagrammar & CYKTAG Parser (TuLiPA)

- Grammar description: XMG provides description language(s) for multi-dimensional grammars (syntax, lexicon (i.e. lemmas & morphology), semantics) including interface of components.
- Grammar factorization: in XMG, descriptions can be combined and reused to yield larger fragments, tree templates or tree families.
- Metagrammar compiler: XMG provides the relevant compilers to create grammars (the models) from metagrammar descriptions.

• **CYKTAG Parser for TuLiPA**: Employs the compiled grammar descriptions. Syntax and semantics is parsed in parallel [2]. and semantics is parsed in parallel [2].

1	<lemma>{entry <- eat;</lemma>
2	<pre>fam <- nx0Vnx1;</pre>
3	sem <- ? E}
4	<morpho>{morph <- @{"eat","eats", "ate"};</morpho>
5	<pre>lemma <- "eat";}</pre>
6	<pre><frame/>{?E[eating,</pre>
7	<pre>agent :?ARG1[person],</pre>
8	<pre>theme :?ARG2[edible],</pre>
9	actor: ? ARG1,
0	<pre>undergoer: ?ARG2]}</pre>
1	}

References

[1] Abeillé, A. & O. Rambow. 2000. Tree Adjoining Grammar: an overview. In A. Abeillé & O. Rambow (eds.), *Tree Adjoining Grammars: Formalisms, linguistic analyses and processing* (CSLI Lecture Notes 107), 1–68. Stanford, CA: CSLI Publications. [2] Arps, D. & S. Petitjean. to appear. A parser for Itag and frame semantics. In *Eleventh international conference on* language resources and evaluation (Irec 2018). [3] Burkhardt, B., T. Lichte & L. Kallmeyer. 2017. Depictives in English: An LTAG approach. In Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms, 21–30. Umeå, Sweden. [4] Crabbé, B., D. Duchier, C. Gardent, J. Le Roux & Y. Parmentier. 2013. XMG: eXtensible MetaGrammar. Computational Linguistics 39(3). 1–66. [5] Dowty, D. 1991. Thematic proto-roles and argument selection. Language 67(3). 547–619. [6] Kallmeyer, L., T. Lichte, R. Osswald & S. Petitjean. 2016. Argument linking in LTAG: A constraint-based implementation with XMG. In Proceedings of the 12th international workshop on Tree Adjoining Grammars and related formalisms (TAG+12), 48–57. Düsseldorf, Germany. [7] Kallmeyer, L., W. Maier, Y. Parmentier & J. Dellert. 2010. TuLiPA - parsing extensions of TAG with Range Concatenation Grammars. Bulletin of the Polish Academy of Sciences 58(3). 377–392. [8] Kallmeyer, L. & R. Osswald. 2013. Syntax-driven semantic frame composition in Lexicalized Tree Adjoining Grammar. Journal of Language Modelling 1. 267–330. [9] Lichte, T. & S. Petitjean. 2015. Implementing semantic frames as typed feature structures with XMG. Journal of Language Modelling 3(1). 185–228. [10] Petersen, W. 2007. Representation of concepts as frames. In The baltic international yearbook of cognition, logic and communication, vol. 2, 151–170. [11] Van Valin, Jr., R. 2005. Exploring the syntax-semantics interface. Cambridge: Cambridge University Press.

Prospects

• Evaluation of the macrorole-hypothesis: corpus study on English and German

- Non-adjectival depictives, e.g. PP-adjuncts with similar semantic properties:
- Kim_i left the poster in anger_i. (7)